We are familar with various methods of integration, definite integrals and the
associated application of finding the area under a curve.

In this unit we first discuss the topic Differentiation under the integral sign, by which
we can evaluate certain definite integrals which are either difficult or impossible by
known methods of integration.

Later we discuss three Reduction Formulae which will be useful in discussing some
more applications of integral calculus : perimeter, surface area and volume in respect
of certain standard curves

S
.‘--!

This topic deals with the technique of evaluating a definite integral of a function of an
independent variable along with a parameter by applying well established rule known
as a Leibnitz radde. Itis important to note that the definite integrals are either difficult or
impossible to evaluate by various known methods of integration. Further, starting from
the value of one definite inlegral, applying the rule, we can find the value of an other
definite integral which is otherwise difficuit/impossible to evaluate.
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If f{x a) obeing the parameter and Iftxe) are continuous functions then it is

xa)
Jdo

E‘
obvious that I f{x, o)dyis afunction of o, be denoted by ¢ ( & ). That is to say that if
it
I
() = I Fla aydy

ol

then Leibnitz rule states that .

o () = g-g = j aq‘; [f{x o)]dxr whereas and b are constants.
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320 INTEGRAL CALCULUS

In other words the rule means that
d y y p
do !f(x,a)dx ‘—‘ﬂjﬁ{f(x,a)]d,\'

Working procedure for problems

= The given definite integral be denoted by ¢ ( @), a being the parameter, x is the
‘variable of integration.

=  Wefind ¢’ ( o) by applying therule. Thatis to differentiate the integrand partially
with respect to the parameter within the integral sign.

<@  Weintegrate between the given limits to cbtain a function of a. That is,
if ¢ (a)=F(o) (say) then ¢ () = _[F(u)di.xﬂ, ¢ being the constant of
integration.

= We evaluate ¢ by taking a suitable value for « with the result we obtain the
required ¢ ( & ).

o

>>  Let ¢(a) = | ¢
n
-We have by Leibnitz rule,

—gy SInX

. dx (D

oo

y d —qv  Sinx < sinx
o= T [ B et
Q0 d g i *
) ax t,:r,r ]
Using je sinbx dx = ——= (asinbx-bcosbxywherea = -, b = 1,

a* + 1P

e rz
¥(a)=-|— {(~asinxy—cosx)
o +1 \---{;

) R =
5 e ax (asinx+cos,\}}
o +1 -

v



LIFFERENTIATION UNDER THE INTEGRAL SIGN

ie., d(a)= 21 {O—eo(asin0+cos{}) v € 5 0as5x 0 0,
a“+1

: -1

ie., ¢ (a) =
o?+1

d(a) = - I;z—l-:—l do +c=-tan ‘a+c

Thus ¢(o) = —tan la+c

Now to find c let us put & = 0 in (2} so that we have

$(e=) = —tan" ! (=) +c

Using (1) in L.H.S we have,
IO- nx dx = - Z4¢ e 30as ot oo
X 2
0 .
ie., 0=-n2+c¢c S =02

Substituting in (2) the required ¢ (&) = —tan” ! o +(n/2)

Thus Ie—“xﬂn—idx=5—tan“lu=cot_la

0 x 2

. _ sin x T “ig_R%_a_=R
Nowputhnga—(},j T dx—2 tan 0—2 0 )

]

'“sinx T
Thus !de=5

x* -1

>> Let d(a) = oo 1
o OB
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322 INTEGRAL CALCULUS

a——
d{a) = '58; (Jiog: ) dx, by Leibnitz rule.
lo;x J_r“ log x dx di; () =a" loga

ie., ()=

#
T ey, ™ T ey, = D ey, ™

x“dx: x{1+1 _ 1
a+1l o+l

Wehave ¢’ {a) =a_-1|-*1*

d(o) = IE{T doa+c.
ie, o(o)=log({a+l)+c . 2)
Puttinga = 0, wehave ¢(0) = logl+c
But 6(0) = 0from(l)andlogl =0 .. ¢ =0

Hence we have from (2), ¢ (o) = log(ax+1)

o
x 1d:::=l¢:ng((1-t-l).

1
Thus 6[ log x

Now putting o = 3 we get

TS o
X - X - 2
dx = logd or = log2° = 2
log x & (-! log x dx 8 2log
y tan l x
Al HY . Lo . . L . .
3. Lraluate J - e d e rentating i e e iafe crilsienand rence frugd
o X 1+ a7
_'[d_f_‘i____._:.i 1y
g X(l+x)
y tan” lax
> Let d(a) = “———Z-dx oD
o X(1+2x7) -

d tan~ ! ax

¢ (ﬂ) = 6[& [m:\ dx,byLeibnitzrule.
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ie.,

ie.,

p 1 x
‘'(a)} = . d
Lo ('}[x(1+x2) 1e(an?

dx
¢ (a) =
" 6[(1+x2)(1+a2.1‘2)

. (2)

We shall integrate R.H.S by resolving into partial fractions taking K% =4, only for
converuence.

Let

1 _ A, 8
(1+8)(1+d2t) 1+F 1442t

1=A(1+a?t)}+B(1+1)

or

By putiing f = -1 we get A=

Alsoby putting t = - 1/a* we get B =
i 1 1 a?

Hence

Replacing back t = x% and integrating w.r.t x betwee 0 and o we have,

e,

LE.,

ie.,

o
1-a4%
2

1 _‘]2

1

S+ (1 42t) 1-a2 1+t 1-2 14224

y 1
:

{1+x )(1+n2x) 1-a° 01+X2 ]

o

, 1 - 1 -1 0
q:(a.)=1 2{[tam ) —aZ-E{tan ax]o}

‘o

o 1+ (aJ.)

—d
, o1 n_oon n{l-a) _ T
Ma)"l-az{?l a2}_2(1—a2)'2(1+n)
11: da
o(ay = 1+ﬁ+c

d(a) = g-log(l+a)+c

To évaluate ¢, let us puta = 0 in (3)

Hence ¢(0) = %logl-{-c

But

.¢(0) =0from(l)andlogl =0 . c¢=20

)



324 INTEGRAL CALCULUS

Hence we have from (3}, ¢ {(a) = glog(1+a)

1

tan  ax n
Thus ——dx = log(1+a
ox(1+xz) 2 8¢ )
Now by putting # = 3 we get,
- -1
tan " 3x n b 2 T
——————dx = logd = Tlog2” = - - 2log2
5 x(1+2%) 2 OBRT 208 2 28
- -1
Thus |28 —2% 4 = nlog2
s X(1+%%)
T2
>> Let p(a) = je"‘ cos o x dx
0
¥(a) = !m (e * cos ax)dx by Leibnitz rule.
0
hy _ 2
ie., d(a) = I e (-sinax-x)dx
0

ie, & ()= _[sinux(-xe_xz) dx
0

2 2
Noting that j -xe ¥ dx = = ¢ *,wehave on integration by parts,

B3 |

. 1 .2 =
¥(a) =|sinax e -] 3¢ - cosox-odx
x=0

S by, B

ie, ¥ (a)y=0-

NIR

Al

= 2
je" cosoxdx or ¢’(a)=-%¢(a) by using (1}
0
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{Here we adopt a different techmigue to find ¢ (o )]

':((:)) = -% and on integration we have
: ¢ (o) o
ie., J-Wda='-[5du+c

2
ie., log@(a):-—%—+c

2 2
Putting o = 0 we have,
$(0)=¢-1

2
et 1dx=¢

O‘_.s

" 2
Note : I ¢ " dux is to be evaluated using gamma functions and it works out to be N /2 which
0

is to be assumed here.

Hence we have Yn/2 = ¢, with the result we write,

o(a) = Vn/2 - o7

- 2 2
Thus Ie" cosaxdy = —"’zlt-_e'““
1] . :

l+acosx
)dx
cos X

>> Let o(a) = | 2BL ..(1)
0

n

¥ia)=[— :

o COSX l1+acosx

- cos x dx, by Leibnitz rule.

¢ (a) = I-—-"L
0

1+acosx
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We employ a known method to integrate R.H.S by using the substitution
tan (x/2) = t. This will give us,

1-# 2d¢

cosx = —— and dx=——5; t varies from () to =
148 1+#
L) 2 o
Hence d' {(a) = 2—‘”/-1—1LZ—=ZI at 3
0 1+a_l;t 0 (1+F)+a(1-1)
1+42
T dt 2 ¢t
f.e., '(a) = 2 =
¥a) J(1+a)+(l-a)f2 l-ﬂ({t2+ 1+a
1-a
Denotingb2 = :i: we have,
L2t dr
: S 2|1 1t .2 1oy b ]
ie., —l_a[btan [b} =0-(1_a)b{tan () tan" 1 (0)}
, _ 2 l-a n
A R TR e
ie, (a)="F= Noh."} I a<1
o 1-42 'ﬂl+acosx N1 a2

ie., ¢(a)=1csin'la+c

Puttingﬂ=0 wehave, ¢(0) = 0+¢
But $(0) =0 from(l) and wehave ¢ = 0

Hence weget ¢(a) = nsin g

Thus we have proved that,

=nsin ta

L
j’ log (1+acosx) dx
. €0s X
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>> Let ¢(a) = Ilog(l+acosx)dx
0

n
¢'(a)= X 4%, by Leibnitz rule.
l+f‘lCOSI
n
IJ' i COS X lj-{l+acosx 1)
1_+_ncos_£ =ﬂ l1+acosx dx
0
1" 1T d
. _1 1 X
Heé ¥(a) =1 {'}[d\ a J]-l»acosr

. , _ 1 .
ie., p{a)= T m { Refer previous example)

f,q dn
¢{a)=nm : —=|tc
I a avVl-a
Using the formula,

+C

B o ek x - og[l+____ \’l—xf]
a1~ 22 x .

<4

d(a)=mn [lognﬂog [

or .¢(a]=nlog(l+m)+c
Puttinga=0wehave,¢(0)=nlog2+c

But ¢(0) 0 from(1) and wehave ¢ = —nlog2
Hence weget ¢ (a) = nlog(l+m)—nlog2

i [1+\)1-—a‘]'
— |, a<x1

Thus we have I log{l+acosx)dx = nlog
0

327
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328 INTEGRAL CALCULUS

n/2

.2
>> Let p(y) = I log(lf.gsm X) i (D
o sin® x
n/2 1 1
¢’(y)=I ) . 5 .sin’ x dx by Leibnitz rule
0 sirf x l1+ysin®x
n/2 i
§ , X
e, ¢(y)-= _[*““'**“'5-*

o ltysin"x
{We employ a known method to integrate R.H.S)

n/2 4 n/2 4
X x
¥(y)= =
Y l;lfcoszx+(l+y)sir|2x quszx[l+(l+y)tan2x]
n/2
. Fxd
ie., & (y) =I Sec xax

o 1+(1+y)tan’x
Taking t = V1 +y tanx we get dt=\‘1+ysec2xdx

Also t varis from 0 to oo,

dtNl+H
1+#

. 1 —1, o0 - -
ie,  #(¥) = gy [an '] = g Ltan (o) —tan”1 (0) )

Hence ¢’ (y) = _[
0

i

e V) =y

R )
by =r iy

e, ¢(y)=1t\ﬁ_-:§+c

Puttingy = Owehave $(0) = r+c¢

But $(0) =0 from(l) andhence ¢ = -n
Hencewegetd(y) =n¥l+y-n ‘

1+ysin2x)

x..v’2l
Thus we have I g ( 2
sin® x

0

dx=nlVity-1]
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ft

* dx n
>> Let ¢(a) = =
t{(Jc—-t:osx VoZ-1

Differentiate w.r.t. &
T
, _f[e | 1 _. & 2 o an
Now ¢(a)_6[aa[a—cosx}dx_nda (oe"-1)

where Leibnitz rule is employed for differentiating under the integral sign.

n

g (G~cosx) 2
x
dx o

or =
o (a~cosx)  (o?-1)2

Now by putting o = 2 we get,

dx _ 2=
0 (2—cos:\f)2 3V3

Remark : Here it may be observed that starting from the value of one integral, which infact
can be pbtained comfortably, we have found the value of an other integral easily (which is
otherwise difficult to evaluate) by applying Leibnitz rule.

1

>> Let ¢(m) = Jx'"dx=
0

1
m+1-
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Differentiate w.r.t m, where We shall apply Leibnitz rule to differentiate under the
integral sign.

1
d d 1
Jﬁ(fn)dx=a-?;( J

-

-1
ie., 2 (logx)dx = ———
J 8x) (m+1)?
Applying the rule again we have,

1
[x™logx (logx)dx = (=1)(~2)(m+1y 2 = (=121 (m+1)"3
0
1

ie, _[Jr""(log;):)zdx=(—1)22!(1nrt+1)‘3
0

Applying the mle; once again we have

1
[ x™logx (logx)2dx = (-1 21(-3)(m+1)*
0
1

ie, [x™(logxYdx= (-1 31(m+1)"*
' 0

Continuing like this, by differentiating »# times we get

1

[x™(logx)"dx = (-1)"nt(m+1y ("*D
0

1
m " (-1)’!“!
Thus ';[I (logx) dx=m
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iy 2
>> Let ¢{(a) = Ie'“x dx = L n/a =ﬁa"1/2
0 2 2
, _“ - ad _¥r 1 3,
¢(a)-6[e ax (—xz)dx+—2--—*2-a

where we have employed Leibnitz rule to differentiate under the integral sign.

Differentiating again w.r.t a we have,

= 2
v (a) = [ (=27 Pax =
]
Similarly we have,

ViR -1 -3 _5n

o

¢ (2) = je_“; (-x*) dx Vn -1 -3 -5 -
0
Continuing like this, on differentiating n times we have,

6 () = [ (m2yrae - .21 2325 _(2n=1) sanene
0

4 L]

or J.e*axz (xz)n(_])ndx - g ) 1-3-5---(2rn-1) (--l)na_[“E]

W PRSPPI I SERSEE)
2

1
0 znalf+2
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~ Evaluate the following integrals by differentinting under the integral sign [1 to 3]

e* —ax -2
1 I— 1-¢ )dx, a>-1 2. Ixe sinaxdx
0 x 0

?log(l-!—smacosx)

o

X

4. Differentiating JT =1 tan” ! (5) under the integral sign, evaluate
o (F+ay @ a

X

J' dx

o (P+d Y
5 Giw.nf.-nthatM ax __E_ a> {0 show that
) 0x2+a"2‘f;'

] dx . m 1:3:5-..(2n-1)

n+l ~ 2 1
o (F+a) Mttt

)
6. If ¢(y) = Je_x sin2yxdx,showtha’t%11+2y¢ (y)=1
D

2
1. log(1+a) 2. E’;Ee‘”“
X 1 -1
3 na 4 —5— 35— +—3tan x/a
2 (i)

Reduction formulae is basically a recurrence relation which reduces integral of

functions of higher degree in the form l[f(x)]" dx I[f(x)]’" [g(x)]" dx

“where m and n are non negattve integers) to lower degree. The successive application of
the recurrence relation finally end up with a function of degree 0 or 1 so that we can
easily complete the integration process.

We discuss three standard reduction formulae in the form of indefinite integrals and
“he evaluation of them with standard limits of integration.
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Let ! I sin” x dx

Ism"‘lx-sinx dx = fuv dx (say)
We have the rule of integration by parts,

fu

dx = u_[v dx—”v dx-uw dx

v
I | _ _ s n-~2

[, =sin"""x (-cosx)— ) (—cosx) (n-1) sin x-cosx dx
= -sin" " lx . cosx+{n-1) _[sin”_zx-coszx dx
= —gin" "1y . cosx+{(n-1) Isin"'zx(l—sinzx) dx

—sin® "1y . cosx+(n—1) Isin"_zx dx—(n-1) Isin"x dx

ie., In=—sin"_1x-cosx+(n—1)fﬂ_2—(n—1)fn
. _ on=1
ie., I [1+(n-1)] = —sin x-cosx+(n-1)1 _,
. —-sin""Yx . cosx m-1
IH=Ism"xdx= - + L, )

This is the required reduction formula,

(i) Tofind |sin®x dx

>> Comparing with the LH.S. of (1), weneed totake n = 4 and use the established
result,

3

_ .4 . ~sin"xcosx 3
14—Ismxdx———-—-——4 +41’2

We need to apply the result (1) again by taking n = 2
ie., I4=-—“Z—-——+“4- ———T—“—~+51'0
We cannot find I, from (1). But basically we have

I = Isinox dx = _[] dx = x

~sin3xcosx 3 | ~sinx cosx 1 }
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-3
, -sirx cosx 3 | 3x
Thus I4=Ism4x dx=——-——~4 —gsmx cosx+—8 +c

(i) Tofind [ sin®x dx

. 4
_ . 5 _-sin"xcosx 4
>> 15—_[51nxdx—»—--—5 +5I3
, N —sin? x cos x +_4_ -sin’ x cosx+g Y
i = 5 5 3 31
.1 _ . N
But Il=fsmxdx— Ismx dx = —cos x
j i x dy = —sin’ x cos x _ 4sin®x cos x _ 8 oS X 4 ¢
St ax = 5 15 15
/2
Corollary : Evaluation of _fsin"x dx
0
n/2
Let I = [sin"x dx
0
Equation (1) must be established first.
n/2
sin” ' x cos x n—1
from(1) I = -[ " + I
But cos(n/2) =0 = sin0.
n-1
Thus [, = —— 1, _, )

We use this recurrence relation to find I, _, by simply replacing nby (n-2).

: n—-3
ie., L _,+ ) I _4

S ool B3 by back substituti
Hence I = n p=7 ln-q-bybacksu stitution.
imil _n-5
Similarly from (2) 1 _, = — L 6

n-1 n-3 n-5 _ N

Hence I = 7 n’3 n % I _¢+ again by back substitution.

Continuing like this, the reduction process will end up as follows.
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n-1 n-3 n-5 2 e
In— " no3 nwoa ---3-11 if n is odd
_n-—l‘n-3 s ---1-1' if # is eve
T on n=-2 n-4 20 s even
n/2 e
But L= Isinx dx=—[cosx] =—(0-1) =1
0
4]
n/2 n/ /2
- .0 = - - I
and IO"_[smxdx-Idx~[x:|0 =3
0 0
Thus we have,
w2 A= 223 85 2 it is odd
J’ s .M n n-2 -4 3
sin” x dx =
0 n—l.n-3.n-5_ 1-£ifnisevn
n n-2 n-4 2 2 ¢
r/2 %/a
Dlustrations : Tofind (1) | sin*x dx (1) [sinlx d
0 0
n/2 3 1 3
. .4 ______TE=_§
) Jsmxdx—422 -
~2 4 2 8
.5 _22_ 8
(i) Jsmxdx 5'3 " 15
0
Let I = Jcos"x dx
=Icos”‘1x-cosx dx
Integrating by parts we have,

I = cos"‘lx-sinx—_fsinx (n-1) cos" ?x (—sinx) dx

cos"_lx-sinx+(n-l) Jcos"_?'x'sinzx dx

I
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= cos"_lx-sinx+(n—1) Icos"”zx(l—coszx)dx

= cos" lx.sinx+(n-1) Jcos"'zx dx—-(n-1) _[cos”x dx

L =cos"'lx-s'mx+(n—l)In_z—(n—l)I"

e, In[1+(n-1)]=cos"_1x-sinx+(n—-1)1n_2
n-1 ; _
I = fcos"xdx:cos nx smx+nn_1 I_, ... 1)
n/2
Next, let I = Icos"xdx
0

2
n—-1 . -
from (1), In=|:——-——cos nx smx1 +nn1 In_z

But cos(m/2) = 0 = sin(.

n-1
Thus I = m L_, o {2)

Remark : This result is same as (2) of 5.31 and proceeding on the same lines as in 5.31 we
L %]

can obtain the result which is identically same as that of I sin” x dx.
0

n/2 "2
Infact we can easily conclude that J‘sin’1 x dx = Jcos" x dx because of a property of
0 0

a ’
definite integrals, If(x)dx = jf(a—x)dx as we  have f(x)=siflx ;
0 0

f(n2-x) = {sin(at/Q--x)]]rl = (cosx)" = cos"x

_‘1 - -
n/2 1 =3 5...?- ifn is odd
" n n-2 n-4 3
Icos xdx =
. n-1#-3 n-5 l-f'-ifn‘sev
m m_2' m_a'""22 i en
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() Tofind [ cos®xdx

>> We have from (1) by putting 1 = 6,

c055 xsinx

16 = Icosﬁxdx= 3

5
+gl4

ie,

4 tih

cos” x sin x 5 | cos® ¥sinx 3
=—*6——+-6~ —_— L

337

‘ a cos® x sin x . 5 cos® ¥ sinx + 5 [ cos x sinx N _]:l,
T T e 24 O FSInx + g 2 2'0
But Iy = Jcosoxdxz Ildx=x

Icosgxdx_cossxsinx +5c053xsinx +_5 oS x sinx
- 6 24 16
n/2 n/2
Tofind (ii) Ims6xdx (iii) fcos7xdx
0 1]
" 531n 5
ii 6 2.2 1 nt_>5n
(ii) Jcos xdx = 643 7" m
i 6 4 2 16
7 _642 16
(iii) Jcos xdx = 7533

Let I = [sin™x(cosxdx)

= [sin™ 'x(sinxcos"x)dx = fuv dx (say)
Wehave [uvdx = u [odx— [ [vdx-u'dx -
Here [vdx = [sinxcos™dx

Put cosx = ¢ . —-sinxdx = dt

SXye
16
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t"‘l‘l n+1

Hence Ivdx= I-—t“d!= - T e

1 n+l
m— —cos" Tt x —-c x Cme
Now | n:(smm 1Juc)[—-——~-—o ]_Iw_os (m—-1) sin™ Zxcosxdx

m, n+l n+1
, sinm"'lxcos"”x "
ie., = - sin™ "2 x cos xdx
n+1 n+1
sin” " Yxcos"tlx n 2
= - sin™ 2y cos" x-cos® x dx
n+1l n+1
sin™ " 1 x cos"t
= - _[sm x cos” x(l—sm x)dx
n+l n+1
sin™ Yxcos" 1 - m-1 m n
= - sin™ 2 x cos” x dx sin” x cos xdx
n+1 n+1 n+1 _
[ = ~sin” lxcos" 'y m-1 m-1
m, n n+1 n+l m~2n pn4l1 Mmn

. m-—1 _ 1 om-1 4+ 1
ie., Im'"|:1+n+l}—n+1["sm X CO8 x+(m—1)1m_2’n}

m+n 1 m -1 n+l
I’"'”{n+1:\:n+1 [—sm X €O8 x+(m-—1)fm_2,n]

om=1 n+1

sin X cos x m-1
= | sin™xcos xdx = — + 2
m+n m+n M-anm

(1)

Note : If we decompose sin™ x cos” x = (sin™ x cos x ) cos” “Vx andintegratebyparts,

bytaking u = cos" 'x, v = sin™ x cos x we can obtain

—sin®t  xcos" 1y -1

I = + !
m n m+n min mon-2 @)
n/2
Now, let I = fsinmxcos" xdx
1
m-1 n+l 2
sin” " Xxcos x m-1
from (1), I z - —— +
A L m+n m+n m-2n
, nm—1 . )
Le, I = — ] [ cos(n/2)=0=sin@8]

m, n mM+n m-2,n
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/ _ m-=3
. m-2,n_m+n_2 m-—4,n
m-—1 m-3 o
Hence I = min min—2 L, _4 » by back substitution.
Continuing like this we obtain
—2—1 if m is odd
| _m=-1 m-3 m-5 y 3+ Ln
mn ’ - 4 .
m+n m4+n—2 m+n-—4 1 I ifmiseven
2+n On

n/2 n+1 /2
Now | =Jsinxcos“xdx=— Los__ % -
1,n ; n+1 n+1
2 not o on=3 2 nisodd
and [ -j osT xdx = " -2 3
0,n_0c S |mzip-3 1am.
N alg 37 if miseven
m-1 m-—3 2
= . if mi dni odd.
Im,n el 3+nxn+1 m is odd and n is even or
, o.m-1 _m-3 1
mnr T omaen m+n-2 24n
n-1n-3 2 if m is even and n is odd
« n n-2 3
"_1-"_3---1‘E'fmis ven and n is even
n n-2 22° ¢ an e

Note : This reduction formula for all the cases can be represented as follows.

/2
f [(m=1)(m=3) - ][(n=1)(n=3)---]

(m+n)(m+n-2)(m+n—-4)- .

Isin’" xcos" xdx = x k
0
where k = n/2 whenmand nare evenand k = 1 other wise. This is known as

Walli’s rule.

Mlustrations
n/2

| 5ot rdx < LMY _ 8
2 OIS‘“"“’“""* 9x7x5x3x1 315
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o Fuatseatras - LEGEUGEN 1
n/2
w fabserar- GBI 1
n/2
o Tatreota LDSEOUOGO 2 2

0

Evaluation of definite integrals

Note: 1. The pre requisite for the evaluation of defimite infega;'afs are its various properties.
In the ultimate step, the evaluation is completed with the help of the reduction formulae.

2. In the cases of definite integrals involving algebraic functions like
(i) a~xwecanusethesubstitution x = asirt 0
(i) @+ x, we can use the substitution x = a tar’ 6.

To remember

n/2 n/2 1 3 5

1 o = n —n_ .n_ -n—- .

(1) Jsm xdx—é{cos xdx = - o —Y x k

where k = n/2 only when n is even.
n/2

{ii) Ismmxcos"xdx:[(m_l)(m_s).”][(nnl)("_3)“‘lxk
0 (m+n)y(m+n-23)---

where  k = n/2 only when mand n are even and k = 1, otherwise.

ft T T
11, j sin® (x/2)dx 12. jsin"' xdx 13, Ix sin® x dx
0 0 0
n n/2 n
14. Ix cos® x dx 15. I cos8 x dx 16. J x sin® x n:os4 xdx

0 -1/ 2 0
T

17. _[ sin® x cos? x dx
0



REDUCTION FORMULAE N

. n
M1 Let 1= [sin®(x2)dx
¢
Put 2=y
n/2

=2 fsin’ydy
0

dx = 2dy fx=0y=0;Kx=mny=n2

. % by reduction formula.

. n
12. Let I = [sin*xdx
0

If fix)=sin'x and 22 = or a = 2

f(2a~x) = sin*(m-x) = sinx =f(x) e, f(2a-x)=f(x)

2 a -
Thus by the property If(x)dx = 2_|-f(x)dx we have,
0 G ’
/2 3 1
=2 Jsin'ixdx =.Z-Z-E-gbyreductionformula.

Thus I=3n/8

"
13. Let I = [xsinfxdx
0

. a a
We have the property If(x)dx: Jf(a-—x)dx
0 0
n n .
I= _[(n—x)sins(u—x)dx= I(n—x)sinsxdx
0

0
L

T
=n Isinaxdx— Ixsinsxdx
0 ]
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x n/2
f=mn Jsinsxdx-f or 2l =n-2 _[sm8 v dx {Asin Example-12)
¢ o
7
Hence I = n E-E-é‘%——g,by reduction formula.

n
14, Let [ = Ixcosﬁ’x dx
0
n n
I= I(n—x) cos® (m—x)dx= j(n—x) cos® x dx
0 0
k.1 " n
I==n Icosﬁx dx— _[xcosﬁx dx=m fcosﬁx dx—1
0 Q 0
n/2
2 =1n-2 Icoséx dx
0
I = n%%%% byreductionformula.

15. let I = _[cossx dx
-n/2

a a
We have the property : If(x) dx =2 If(x) dx if f(-x) = f(x)
—a 0
Here coss(+x) = cos® x and hence we have,
w2
I=2 _[cossx dx

=
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T
16, Let [ = Ixsinzx cos? x dx
0
I
I= I(rr.—x) sin® (m—x) cos? (r—-x) dx ,by aproperty.
1}
ki
= I(n—wx) sin? x cos®x dx
0
n h
=% Isinzx costx dx~ _[x sin®x costx dx
¢ Q
™
I=n Isinzx costx dx—1
0
n/2
21 =mn.2 Isinzx costx dx
O

: cn 123 (1) 2 -
L, I=m PR Iors 5 by reduction formula.

Thus [=n*/32

n
17. let [ = Isinﬁx cos? x
0
n/2
=2 Isinsx cos x dx , by a property.
0
_ A, I3 MITEIE)N)] = .
I=2 10X 86 %A 2 5 by reduction formula.
Thus [ = 3n/256
-
18. Eoaluate j cos’ Av gint e - einie rednd non fareandy

il
r/6

>> Let I = j'cos4 3x sin? 6x dx
0
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sin6x = 2sin3x cos3x - sin® = 2sin(6. 2) cos (6/2)

n/b

I = _[ cos? 3x (2 sin3x cos 3x )2 dx

0
r/6

ie., I=4 _[sirn2 3x cos® 3x dx
0

Put 3x =y .. dx = dy/3.
If x=0,y=0; fx=n6 y=n72

n/2 n/2

Iz4fsmycos y-—é‘i gjsinzycosﬁydy
y=0 0

_4 (53 = |

I = 3 |: S XExdx?2 2] by reduction formula.

Thus I = 5n/192

1} sin'9o

2d9
o (1+cos8)

> let [ =

_?I2sin'(9/2) cos (6/2) 1 do
o [2cos? (68/2) ]

- Ilem (9/2) cos? (8/2)
4 cos? (8/2)

0

4 [sin*(0s ) do
0

-—
i

Put 62=¢ .. do=2d¢ and ¢ variesfrom 0 to n/2,



REDUCTION FORMULAE

/2
I=4 {sint¢-2d0
$=0
fe., I= 8%%%, by reduction formula.

2
4
X
»>> Let [ = dx
e
Put 1= 4sin @ or x =2sin® - dr =2cos6 de,

8 varies from 0 to 7/2 and V4-+2 = \/4c0529 = 2 cos B.

n2

.4
16sin"0-2cos 6 40 . 4
= -'-'-1 GdB
2cos0 6 _[sm

8=10 ¢

I

Hence | = 16%%% » by reduction formula.

Thus I = 3n

1
> Let I= [2(1-29"2dx
0

Put Xx=s5in6 . dr=cos0d0 and 8 varies from O to m/2.
(1—x2)3”2=(c0529)3‘;2=c0539 .
n/2 n/2

I'= fsirf0cos®8.cos0d6 = [sin?6.cos® 640
0 it
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(1))
Herce I == %2 2

Thus I=x/32

by reduction formula.

. ’ 1
>> Let 1= §22(1-xy%dx
.8

Put X = sinze, dx = 2sin8 cos® d0and 9 varies from 0 to n/2.

Also (1—3:)3”2 = (C0829)3/2 = cos> @

. 7
I= Isin39c0538-2sin6c059d8
a==0
n/2
ie., =2 I sinf8cos?ode
0
L IBMUBMW] = .
Hence I = 2 86 xAx2 > by reduction formula.
Thus 1= 3r/128
i1
>> Let [ = Isin_lx-x?'dx
0
Integrating by parts we get,
- 1 1
I= sm_lx-ﬁ —I—Ii 1 dx
1
_(= 1_0}_11 2
(273 3oN1-2
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w2 4 .
I_E_lj‘sinﬂ-cosﬂde
"6 3 cos 8

9=0

1::/2
= F_L1 (.3
1=%-3 Jsin’ad0

0

n 1 2 . :
I =% "33 by applying reduction formula.
1{rn 2
Thus I‘3(2"3)

21
>> Let I1 = _[xz \f2ax--x2 dx
0

Put x =2asin%0 . dx = 4as5in0cos0dB, O varies from Oto w2

Also  N2ax-x* = Vagt sin” 8 ~ 4a° sin* @

ie, = Y4a®sin®@(1-sin0) = Vaa®sin2 0 cos2 8 = 2asin B cos O

n/2
: 1'1 = Iflazsin“ﬁ-2asinBcosB-4asin9cosGdB
a=0

/2
= 324* [5in® 0 cos” 0.d6
1]

_ad [GYB)MIIIM)] =
= 32 8x6x4x%x2

Thus ll =5na'/8

s by reduction formula.

347
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n/2 4“2 6
sin’
ii I = - 4a5in @ 0de
(i) I 2a4sinBcos O s b cos

n/2
= 82 [sint6 do
0

=87 5 - % by reduction formula.

a
>> let I = Ix\‘ux—?
]

Put x = asinf® .. dx = 2asin® cos 040, 0 variesfromQto 2

Also  Vax-x* = Va*sin®0-a2sin0 = '\!a2sin28(1-sin29)

= \Jazsinzﬁ‘cosze = @sinBcos O

n'?
I= Iasinze-asinBcosB-ZasinGcosGdB
0
n/2
203 _[sin49c0526d9
0

=247 .

(3:1)(1) =
6x4x2 2

Thus I=nd /16

by reduction formula.
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22
>> let [ = fx"'\JZax-—xi dx
0

Put  x=24sin’0 .~ dx = 4dasinBcosb d6

6 varies from Qto m2. Also \J:.?f.lx—;2 = 28sinBcos B
n/2

I= I(2a)”sin2"8-2asin9c058-4asin9cosﬁd9
6=0
n/2
= gn+3 n+2 Jlsi.nz"+29c0529d9
Y

Here (2n+2) is an even integer and hence the application of the reduction
formula will give us

[=on+3 gn+2 [{2n+1)(2n~1)(2n-3)---1]-1 ‘
(2n+4)(2n+2)(2n)---2
— N2 n2 (2n+1)(2n-1)(2n~3)---1-x
2(n+2)2(n+1)2n2(n-1)..2-1
-2 2 (2n+1)}(2n-1)(2n~3)---1-x
2" 2 (2

MlAa

Multiplying both the numerator and the denominator by 2n(2n-2)(2n-4). ..

in order to obtain (27+1)! in the numerator we have,

fogn+2 (2n+1)(2n)(2n-1)(2n-2)(2n-3)(2m-4)-.-21 .7

(n+2)! 2n(2n-2)(2n—-4)---2

_ a"+2-(2n+1)!n
T (n+2)12n-2(n-1)-2(n-2)---21

A TINE -
(n+2)! 2" nt

Thus 1 = ua’[i‘]u A2A1)! o required.

2] (n+2)int *

349

2



350 INTEGRAL CALCULUS

Now putting n = 3 we get,

2 s
1

I=I1'3 V22~ 2 dx = naz[%] E?ET by the above result.
0 13!

Thus [ o n.7.-6(51) 7nd
N
1y
>» Let I = dx
o ¥1-
Put r=sin® .. dx =cos0 d0 and O varies from 0 to /2.
n/2 . 99 2
= 222 050 d0 = {sin’6 do
cos 9
0=0 0
8 6 4 2 .
Hence I = 35753 by reduction formula.
Thus I = 128 /315
: - 4
X
>> Let [ = )——5— dx
6[(1+x2)4
Put x=tan® . dx=secc8 d0

I x=0,0=0 ; If x =9, 6 =772

Also (1+x2)4 = (1+1:a1128)4 = (sec28)4 = sec® 8

n/2 ¢ 48 ‘.lt/2t 49
1= 22 seltodo= [ do
8=0 8 g sec B




REDUGTION FORMULAE

"2 in’ 0 |
=Icosﬁsn dG-Ism Bcos’Bd6
G cos? 0
(3)(3): (1) =n
Hence [ = 6xix2 by reduction formula.
Thus 1—5/32
>> Put x = tan® .. dx = sec®8 d@ and 6 varies from 0 to /2
Also (1 +x%)% = (se?8)"? = sec’ 0
n/2 n/2
tan @ - sec? 6 tan’ §
= [BRECD 4y o de
8=0 sec’ & 0 sec” B
n/2

= J'sinzﬁ cos38 de
0

_ ()2 _ 2
Hence [ 5x3x1 =15 by reduction formula.

Thus I=2/15

>> Let I=I—-*—-x~zgﬁdx
0(1+I)

Put 2% = tan?@ ie x = (taarlzﬂ)l’“5 = tan3 0

" drx = %tan_"/ae sec?® 48 and 0 varies from 0 to n/2

= t ~239 sec 6 do

351
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_1 42 _ 8
353" 45
Thus I=8/45
Evaluate the following .
T
1. Ixsi.nsx dx
]
n/4
3. fcosabr dx
Q
-
S. Isin4x coslx dx
0
n
7. Ixsin7x coszx dx
0
1
9 Ixs sin ™ x dx
0
a
4
L I~ e
. _
1
3
X
13. dx
‘! (1+22)
o 6 -
e
15. dx
5[ (1+x2)?
1. 8n/15 2. 8/45
4. 3%/512 5. 3n/128
7. 16m/315 8. 8V2/3
10. m32 - 11 316
13. 1/12 14. 1/124°

i

4.

10.

12.

14.

INTEGRAL CALCULUS

by reduction formula.

n/6

j sin°3x dox

0

n

_[ x sin®x costx dx
D

n/4
j sin44x cos 2x dx
0
J V1 - cosx
n?x dx
1 + cosx

1222972 ax
0

1
J.vc‘l(l---:rz):a’:2 dx
0

X
—_— dx
['!(az-kxz)s

3. S5n/64

6. 128/1155
9. 11n/192

12. 3n/256
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AN SR

Theequation y = f(x) intheexplicitform geometrically represents a curve. To draw
this curve, the basic procedure is to take some values for x and find the corresponding
values of y. The set of points (x,y) so tabulated are joined by a smooth curve if the
points are non collinear. But we cannot employ this fundamental procedure if the
equation of the curve is in the implicit form f(x,y) = 0 and itis complicated too.

This topic gives an insight to the process of finding the shape of a plane curve based
on its equation by examining certain features. Based on these features we can draw a
rough sketch of the curve. It is highly essential to know the shape of the curve to
find its area, length, surface area and volume of sélids.

ERE

". Symmetry : If the given equation has even powers of x only then the curve is
symmetrical about the y-axis and if the given equation has even powers of 1 only then
the curve is symumetrical about the x-axis.

If f(x, ¥) = f(y. x) then the curve is symmetrical about the line y = x. Also if
f{x, y) = f(—x, ~y) then the curve is symmetrical about the origin.

2. Special points on the curve: Iff(0,0) = 0 thenthe curve passes through the origin.
In such a case we can find the equations of the tangents at the origin by equating the
groups of lowest degree terms in x and y to zero.

The points of intersection of the curve with the x-axis is got by putting vy = 0 and that
with the y-axis is got by putting x = 0.

3. Asymptotes: Asymptote of a given curve is defined to be the tangent to the given
curve at infinity. In otherwords these are lines touching the curve at infinity. Equating
the coefficient of highest degree terms in x to zero we get asymptotes parallel to the
x-axis and equating the coefficient of highest degree terms in y to zero we get
asymptotes parallel to the y-axis.

4. Region of existence : Region of existence can be determined by finding out the set
of permissible (real} values of x and y. The curve doesnot lie in the region whenever
X or yis imaginary.

By examining these features we can draw a rough sketch of the curve.
Note : In the case of a parametric curve : x = x(t) and y = y (t), we need to vary the

parameter t suitably lo take a note of the variations in x and y so that the curoe can be
draum accordingly. ]

i

1. Symmetry:1f f(r,8) = f(r,-8) then the curve is symmetrical about the initial
line =0 and 6 =
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If f(r,0) = f(r,m—8) then the curve is symmetr:cal about the line 6 = /2
(positive y- axis)

If f(r,8) = f(r,n/2-0) thenthe curveis symmetrical about theline 6 = n/4 (the
line y =x)

If f(r,0) = f(r,3n/2-9) then the curve is symmetrical about the line 6 = 3n/4
(the line y = —x)

If f(7,0) = f(—r,8) then the curve is symmetrical about the pole. {origin)

2. Curve passing through the pole : If r = { gives a single value of B say 0,
between 0 and 27 then the curve passes through the pole once. 8 = 8, is a tangent
to the curve at the pole. If it gives two values then the curve passes through the pole
twice.

3. Asymptote . 1f r — c0as 0 > 6, then theline 8 = 6, is an asymptote.

4. Region of existence : If ris imaginary for 8 € (@, f)ie, a <8 <f then the curve
doesnot exist in the region between8 = ciand § = B.

5. Special points : We can tabulate a set of values of r for convenient values of 8.
These give some specific points through which the curve passes.

By examining these features we can draw a rough sketch of the curve.

>> We have yz {a=-x) = x>, [This curve is known as cissoid.]
We observe the following features of the curve.

1. Symmetry : The eav~' "on contain even powers of y.
= the curve is sv'.unetrical about the x- axis.

2. Special» ~ *  'he curve passes through (0,0).
The ~en _, .ationis ay® —xf = x>,

 lowest degree term is ay2 and ayz = 0 =y = 0. which is the equation of the x-

xis. Hence x-axis is the tangent to the curve at the origin.
Putting ¥ = 0 we get x = 0 and vice- versa. This means that the curve meets the
x-axis and y-axis at the origin only.

3. Asymptotes: Equating the coefficient of the highest degree termin y i.ecoefficient
'f 3 being a—x tozeroweget x = a whichis a line paralle} to the y-axis. Hence

= a isan ,rmptote Also coefficient of the highest degree termin x is 13 whose
fficientis 1. This implies that there is no asymptote parallel to the x-axis

Region ofexistem:e : yl = x/(a-x)

y=V;3/a— . This is positive if x>0, a-x>0 or x<0,a-x<0 ie
-0, x<a; x<0, x>a. Since &> (the second case is not possible. Hence y is real
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if x>0 and x <a whichimplies that the curve lies in the interval 0 < x <a. Further
as x increases y also increases.

The shape of the curve is as follows.

Note : Since the curve meets the coordinate axes at the origin only, the origin is called a
‘cusp’ with x-axis as the common tangent,

>> Y (a~x) = x*(a+x) [This curve is known as ‘Strophoid’.]
We observe the following features of the curve.

1. Symmetry : The equation contain even powers of y.
= the curve is symmetrical about the x-axis.

2. Special pointts : The curve passes through the origin. The equation of the curve can
be put in the form

a(yz—xz)—xyz—xa = 0.

Equating the lowest degree terms to zero we havea (> —2*) = 0

Hence y = £ x are the tangents to the curve at the origin. Since there are two tangents
the origin is called a ‘node’.

Next, puttingy = Owegetxz(a+x) =0=x=0,x=-a

The points are (0,0) and (-4,0)

Also putting x = 0 we get ayz = 0or y =0 and the pointis (0,0}

- Hence we say that the curve intersects the x-axis at (0,0) and (-4,0) and
intersects the y- axis at (0, 0) only.

3. Asymptotes : The coefficient of the highest degree in-x being x° is —1 and
hence there is no asymptote paralle] to the x-axis. Also the coefficient of the highest
degree in y being a-x, a~x = 0 gives x = a. Hence x = a is the only asymptote
which is a line parallel to the y-axis.
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4. Region of existence: y = Vi (a+x)/a-x.

When a+r<0 anda~x > 0; a+x > 0and 2—-x < 0, y isimaginary. Alsowhen
a+x < 0 and a—x<0 y is not imaginary.

Hence we can say that the curve lies between the lines x = ~gand x = +a.
The shape of the curve is as follows.

>> We observe the following features of the curve.

1. Symmetry : The equation contain even powers of ¥ and hence the curve is
symmetrical about the x -axis.

2. Special points : The curve doesnot pass through the origin.
If y=0 then x = a. The curve meets the x -axis at (4, 0) and it doesnot meet the
y -axis.

3. Asymptotes : The equation of the curveis x yz - &% +ax = 0. Coefficient of _L/2 is
x and x = 0 being the y -axis is an asymptote.
Also the coefficientof x is yz + & and f + @ = 0 implies that y is imaginary.
Hence there is no asymptote parallel to the x -axis.

4. Region of existence : y2 = az_( a-xyx o y=ava-x)x

y is positiveif a~x>0 and x>0or O<x<a

Hence the curve lies between x = 0 and x=a.

The shape of the curve is as follows.
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>> We observe the following features of the curve.
f(r8) # f(r,~0) = the curve is not symmetrical about the initial line.
f(r.8) = f(-r,08) = thecurveisnotsymmeh‘icalaboutthepole.
f(r,®)=f(rn-0) = the curve is symmetrical about the line 8 = /2.
r=0 gives sin30 = 0 = 36 = nm or 0 = n/3

Taking values for n = 0,1,2,...6 we get the corresponding values of 9:0 ,

n/3, 2n/3, n, 4n/3, 51/3, 20 and the curve passes through the pole for these values
six times.

If 0<0<nb, r is positive and r=a if 9 = n/6
If 6<8<n/3, r ispositive and r=0if 6 = n/3
i 3<B<n/2, r isnegative and r = -aif 8 = n/2

These observations implies that r increases from 0 to a as varies from 0 to
7/6, r decreases from a to 0 as 6 varies from /6 to /3,

r increases numerically from 0 to a as 0 varies from /3 to /2.

Further f(r,m/3~0) = f(r,8) implies that the curve is symmetrical about the line
8 = n/6 so that we conclulde that there is a loop between the lines 8 = 0 and
8 = n/3.

Similarly we can examine the path of the curve as 6 moves from /2 to & and also
from n to 2n.

Let us tabulate a set of values of r corresponding to some values of 8
@ 0 30 60 90 120 150 180 210 240 270 300 330 360
r 0 4 0 -2 0 a4 0 -5 0 a 0. -5 0
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The curve is symmetrical about 8 = 57/6 and 3n/2
The shape of the curve is as follows,

>> We observe the following features of the curve.
f(r,8) = f(r,—0) = the curve is symmetrical about the initial line.
f(r,0) = f(-r,6) = the curve is symmetrical about the pole.
r =0 gives @ cos28 = 0
ie., c0s26 =0 = 20 = n/2 and 32
s 8=n/4 and 0 = 3n/4 are the tangents to the curve at the pole.

When9=0,r2=a20rr=d:a.
Hence the curve meets the initial line at the points (+4,0) and (-a,0).

Since the curve is symmetrical about the initial line it is composed of two loops. r is
Teal for0e [0, /4] and [3n/4,n]. Also r doesnot tend to infinity for any 6 and
hence there are no asymptotes.

The shape of the curve is as follows.
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The results connected with the derivative of the arc length [ Refer unit - II ] will be useful
in the discussion of finding the area, length / perimeter of plane curves, the surface
area of the revolution of the curve about a given line. Further we also discuss the
volume of a solid of revolution. The relevent formulae for finding these are as follows.

1. Area: The area (A} bounded by a curve y = f(x), the x-axis and the
ordinates x = 2 and x = b is givenby

b
A= Jydx

xX=4a

The area (A) between the curves y = f(x) and y = g(x) between x = a and
x = b is givenby
b b
A = J-f(x) dx—fg(x) dx.
a a

The area (A) called the sectorial area bounded by a polar curve » = f(6) and the
lines 8 = 8, and 8 = 8, isgivenby

A=

N | =

%

[ ae

B'1

2. Length: The length of the arc of a curve between two specified points on it for

various types of curves are given by the following formulae.

Such a'process is called rectification and the entire length of the curve is called as the
perimeter of the curve.

{i) Cartesiancurve v = f(x) or x = f(y)
b d 2
s=_[ 1+[%] dx or _[ 1+[j—;] dy
x=a y=c

(i) Parametriccurve x = x(#),y = y(t)

t
2 2 2
dx dy
5‘! [dt) +(dt) at
1
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(iii) Polar curve r = f(0)

L) mens r ——
[ dr Y 0 doY
s=_[ r2+[ﬁ} d6 or s= j\ 1+rZ[E] dr
8:61 r=r,
3. Surface area : When a curve revolves about the x -axis a surface is generated and

the same is called a surface of revolution. If a curve is bounded by the ordinates

=a and x = b revolves once completely about the x-axis, the area of the surface
(S) generated is given by

b b
S = IZny ds = IZnygidx
x=a il

2
ds dy
where i = T+
Similarly the surface area of revolution about the y - axis is given by
d d
ds
5= I21tx ds = I21txd—ydy,

y=¢ ¢

ds dx
where Pl 1+ [ dy]
In the case of a polar curve the surface area of revolution about the initial line is
given by

02 B2
S=f2nrsing ds = 2n IrsinB%dB
6=20 8

1
ds (dry?
where 0= 4+ B
4. Volume of revolution : The volume (V) of the solid generated by the revolution of
‘the curve y = f(x) between the ordinates x = 4 and x =b, about the x- axis is
given by

V=uj-y2dx

x=a
Similarly if the axis of revolution is the y -axis , the volume of the solid is given by
d
V=mn I 2 dy
y=¢

Also in the case cf a polar curve r = f(8) the volume (V) of the solid generated is
given by
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V= %’E I r sin® do (revolution about the initial line)

V= —2'; Ir3 cos 0 dB (revolution about the line 8 = n/2)

Aapphivations formuadae a0 o 2!
_i Cartesian curve
Area(A) b
- I y dx
a
d
or _[x dy
[
b
Length (S) J’é_ dx
dx
a
y ds
or IH; dy
[
Surface b
area of 2n Iy g—ﬁ dx
revolution a *
{(S) {about the x-axis)
d
ds
2n fx @ dy
[
(about the y-axis})
leume of b
revolution . n Iyz dx
{v) a

(about the x-axis) '

d
T Ixza’y

{about the y-axis)

TR
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"~ Parametric curve 'Pc')la'r curve
t dx 9
Iy‘ ‘I dt 1 2
3 ) Irz do
t! 6‘1
d
or Ix _d% dt
tl
92
¢ ds
if"—s dt Vi
df e1
.I‘1 rz d
or IEE dr
rl
t?
ds
2n Jy 5 dt |
b 0,
bout the x-axis)
(a ™ eraxs) | rsine —3% 49
on [ x % g4 %
r *
. (about the y-axis)

r .
¢ . dx ‘251! Ir3 sin § d6
T Iyz 'd— dt
: t (about the line 8 = 0 or
1 . .
(about the x-axis) o X-axis)
" | 2 j 7 cos 8 do
28, -3 :
n | i (about the line 8 = n/2|
g ; or y-axis)
(about the y-axis)
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1. The Astroid : Astroid is the curve represented by the equation :
233 < g

Its parametric equationis x = a cos’B and y =a sin® 9.
We shall find its shape first and then determire the associated area, perimeter, surface
area and the volume.

We tabulate x, vy corresponding to certain angles of 9 in the interval [027].

9 0 w2 T In/2 2n
x a 0 -a 0 a
y 0 a 0 —a 0

From the table we conclude that the curve meets the x -axis at the points (4, 0) and
(-4, 0). Also it meets the y - axis at the points (0, a) and (0, —a). Since
|cos®| € [and | sin® | < L, wehave|x| < aand|y| < a Henceweinferthat
the entire curve lies within a circle of radius ‘2’ having origin as the centre.

Also we have from the cartesian equation of the curve,
flxyy=fl-xy); f(x y) =f(x -y}, f(x y) = f(y x)

Hence the curve is symmetrical about
the coordinate axes and also about the
line y = x.

Taking a note of the values of x and . :
y as 0 advances from one quadrant R
to the other the shape of the curve is as B '
shown.

Al Bl by creaena

Note : In any problem on applications we need to draw the curve first by briefly examining the
important features.

The curve astroid is symmetrical about the coordinate axes and hence the required
area( A) is equal to four times the area in the first quadrant.
ia a
d
ie., A=4Iydx=4[yd—;dﬁ
0 0
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We have x = acos> 9, ¥ =asin0 - % = -3ac0s* 0 sin 0
When x =0:ac0s°8 = 0 or cos®0 = 0 = 0 =nn2

x=1:acos30=aorcos39=l = B0=0

0
A=4] asin®e (~3acos6 sind) do
8 =n2
n/2
=122 [sin0 cos?6 do
0

= lhz-L—%é'—ilzz—él—)- . -g, by reduction formula.

Thus the area enclosed (A)is 3n4/8 $q. units.

>> Since the curve is syrmumnetrical about the coordinate axes, the perimeter {(entire
length) of the curve is four times its length in the first quadrant.

n/2 P 2 i 2
- ax ay
| = 49_[0»\ /(dBJ +[d8J do

n/2

=4 I\")az cos49 sinzfi+9a2 sin® @ cos? 6 46
0
n/2
= 4 [Voa? cos? 8 sird 8(cos? B +5in20) o
‘ 0
n/2
=4 I3aco:*.6 sin® 49
0
n/2
= 62 [sin20 do
0
~¢0s2 6
=2

/2
:[: = ~3a( cosn —cosl) = -3a(~-1-1) = 6a

Thus the perimeter of the curve is 64 units.
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| - . o .
T T T S O RTINS O s il fh v i,

>> Because of symmetry the required surface area is equal to twice the surface area
by the revolution of the first quadrant of the curve.

a n/2 s
§=2x I?.nyds=4njy-aad9
0 =0

2
ds f dx
But o ( dﬁj +
n/2

47 ja sin° 032 cos® sinh do
0
2 _ .
= 124 J‘s‘m‘iﬁ cos9 40
0
(3)
Bx3Ix1i

2
(%) = 3a cos® sin® - (Refer Ex - 32)

Hence §

12 na’.

by reduction formula.

Thus the required surface area= 127 a%/5 sq.units.

- R RS V| , s -, .o . . .
AL B IR f.'-r' U ANE T e sl N DR VS : R N
. s ot [ HANTEES FREI

.y K ERES :
X + E Gl thie s s

>> Because of symmetry the required volume (V) is equal to twice the volume of the
solid generated by the curve in the first quadrant about the x-axis.

a a
V=2><I'n:y2dx=2n Iyz—ggde
Y a

0
= 2n Jaz sinﬁe(—Ba cos® @ sin@) 40
9=1\:/2 -
B 75
bna jsin79 cos® § do
0

i 3(6)(4)(2)-(1) ,
= 6na 9% 7 x5x3x 1 by reduction formula.

it

Thus the required volume of the solid is 32n 27105 cubic units.
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2. Cycloid : Cycloid is a curve generated by a point on the circumference of a circle
which rolls on a fixed straight line known as the base. Imagine a wheel rolling on a
straight line without slipping. A fixed point on the rim of the wheel traces the cycloid.
The parametric equation of the cycloid can be in the following four forms :

(i} x=a(0-5in8), y =a(l-cosB)

it

(ii) x=a(8+sinB), y =a(l-cos0)

(iii) X=a(0-5n0), y =a(l+cosH)
{iv) X =a(B+sin0), y = a(1l+cosHh)
Draciigof bheoyeloid % o= ¢ v ap e e g cas o

>> Let us tabulate x, y for certain valueé of 8 intheinterval [0, 2n] where 0
is in radians.

0 0 /2 T In2 2n
o x 0 1§ a(mw2-1) an a(3n/2+1) 2an
| Yy 0 a 23 a 0

From the table we can conclude that the curve intersects the x - axis at x = 0 and
2an. Also, we have y = a(1-cos8) and since | cos | £1 y, is non negative.
Hence the curve lies above the x -axis.

Taking a note of the values of x and y as 8 advancesintheinterval [0, 2n] the
shape of the curve is as follows. It is called an arch of the curve.

WORKED PROBLEMS

35, tind e qren c{f%; el of Ere s foid Yoeagh-einBy, v = a{l~cos0Y
dx
>> Area A= J — dB6
Y a0
. 0=0

2n

i, A= fa(i-cosB)-a(l-cosB) do
0
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2
=@ [(1-cos@)® do
0
2n
= & [4sin®(0/2) 40
0
Put 8/2 =t .. d0 = 2dt ¢ variesfromQton
n /2
A =8 [sinttdt=8272 [sirftar
t=0 0
i 4 = 16822 2 by reduction formul
ie., = a0 g byre on fo a.
Thus the area enclosed by an arch of the curve on its base is 3 & a sq.units

2n dx I
>> Length (1) = I [d_;) +[Eg] de
B=0

2n
ie, 1= ]V2(1-cos@)+a? sirf 40
0

2n
= _[a \l(1—2 c059+c0528+sin29) do
0

n n
=a [2(T-cosB) 6 =a [ V2.2 sin?(0/2) do
g 0

il

2n n
. _ | 2acos(6/2)
Zaoj-sm(O/Q)a‘B— [---—m I

=-da(cosn—cos0)) = —4a(~-1-1) = 8a

Thus the requived length is 84
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2n
>> Surface area S = 2n Jy gg do

0
2 2
as_ fa? raf o
But e \/{dﬁ} + \dﬁ] = 22 5in{(6/2) [Refer Ex-36]
2n
S=2n fa(l~cosB) 24 sin(6/2) do
Q
2n 2n _
= 4na? 2 5in°(0/2) d0 = 8na® [sin®(6/2) db
0 0
Put 92 =t s d8 = 2dt and t varies from Otom
T n/2
Hence S = 8 na? Isin3 E-2dt = 16ma” -2 Isinat dt
t=90 0
: 2 2 . .
ie., S =32ra° 3 by applying reduction formula.

3

Thus the required surface area is 64 & 4/3 sq.units.

2n i
: x
> V:itgyz%de

n
= Iaz(l—cosﬁ)z-a(l—cosﬂ)dﬁ
0
2n 3 ad
=na® [{2sin? (0/2)] @6 = 8na® [sinf(0/2) do

0 0 -
n

n
8na’-2 [sin®(8/2) d0 = 16wa® [ sind (0/2) do
0 4

Put 6/2 =t . dO = 2dt and t varies from 0 ton/2

]
)
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by reduction formula.

Thus the required volume is 5 24’ cubic units.

3. Cardicide :
Tracing of the cardivide . - 0

We observe the following features of the curve.
ST Srtriralaboat the il oo

AT S o Y .
{J.,a R n:‘ —J‘I" T T S S N
= AT Cac caree poono0 Cluanghl the pole B -

Whern § =5 or = A
B s LS “\“;.'E_E-llrl ':.'.}-i'.’ N :f':}\c' f' ot

i

Bangent fo the ours

vy Singe [ oas o
T having s onte el e
Let us tabulate r for certain angles of 0

/3 n/2 2n/3 " n
a a’2 0

;
3] 0
r 2a a2
Tt is evident that as 0 increases from 0 to n , r decreases from 22 to 0. The

shape of the curve is as follows.
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Yauog i AT S

>> Since the curve is symmetrical about the initial line, the total area (A ) is twice
the area above the initial line.

n n
ie., A=2—% jPdo=[a?(1+cos0y do
0 0

n n
= @ [12c0s? (8/2) d0 = 42 [ cos* (6/2) do
0 0

Put 0/2 = ¢ . d0 =24t and t varies from 0 to n/2
n/2 ' n/2
A= 4::2 Icos4t-2dt = 802 Jcos4t dat
t=0 Y
31 xn .
= Ba*- 152 , by reduction formula.

Thus the area enclosed is 3 a%/2 sq.units.

I T T P B TP S 7 PPN SOV S S

>> Perimeter (length) = 2 (length of the upper half of the curve)
5]

b2
ds ds
; = —_ o — = A
ie., | 2 Jde 48 where o \/rz + 0

Now '33—:'\/a2(1+l:059)2+az Sln29 =4 2(1+C058)

=2a cos(0/2)

ks
. s
perimeter = 2 I2a cos{8/2) d0 = 4n {sm}(g 2)
0

—,
I
®

Thus the perimeter of the curve is 82 units.
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»> Surfacearea § = Ian sin 0 -ggde

2
But .g% = \/;2 + [%) = 2a c0s(0/2)  (Refer Example - 40}

T
S=21 fa(1+cos8) sinB-2 cos(8/2) do
6=0

n
4na® [2 cos?(8/2)-2 sin(6/2) cos (8/2) cos(6/2) d6
Q

it

n
16ma® [cost(6/2) sin(0/2) do

0
Put 82 =t .. dB = 2dt and # vares from 0 to n/2
/2
Hence § = 16na* Icos‘t sint -2 dt¢
t=0
= 32,“,2,@_&3_1 by reduction formula:

5x3
Thus the required surface area is 328a>/5 sq.units.

. n n
>> »-:51:]#* sin 0 de=@j'a3(1+cose)3sine d0
3 H 3 0

Put t=1+cosH soodt = -35in@ do
If 6=0, t=2andif B=mn, t =0
0 2
3 3
2xna 3 2na 3
=—3—i‘t (-dt):—s—(_)[t dt

ﬁ2na3 ﬁ ..2“"’3(4__0 _81::13
T3 4 -3 )= K]

Thus the required volume is 81 a*/3 cubic units.



